?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
해밀턴(1805~1865)영국의 수학자·이론물리학자. 아일랜드 더블린 출생. 변호사의 아들로 태어나 어릴 때부터 신동으로 통하였다. 백부(伯父)의 외국어 교육으로 13세 때에 이미 10여 가지 외국어를 익혔다고 한다. 수학에 흥미를 가지고 뉴턴·라그랑주·라플라스 등의 저서를 읽어, 대학 입학 당시에는 이미 수학을 거의 통달하였으며, 또 광학계(光學系)에 관한 뛰어난 이론과 아이디어를 창안하였다. 1824년 더블린대학의 트리니티 칼리지에 입학, 27년 재학 중인 칼리지의 천문학 교수로 선임되었으며, 던싱 천문대장을 겸하였다. 이듬해 《광선계의 이론》 제1부를 발표하였는데 이것은 해밀턴의 특성함수(特性函數)를 도입한 것으로, 광학계에 대한 일반적인 대수적 이론을 세운 것이며, 기하광학(幾何光學)의 기초이론이었고, 후년의 역학이론을 출발시키는 기본이 되었다. 이어 원뿔굴절[圓錐屈折]을 예견하였는데(1832), 이것은 H.로이드에 의하여 실증되었다. 그 무렵부터 광학을 도입한 역학의 모든 분야에 이를 확장시키려는 시도에서 특성함수를 사용한 빛의 전파(傳播)와 질점(質點)의 운동을 통일, 34년 변분원리(變分原理)라고 하여 ‘해밀턴의 원리’를 확립하였다. 또한 ‘해밀턴의 정준운동(正準運動) 방정식’을 수립함으로써, 해석역학(解析力學)의 기초를 확립하기도 하였다. 한편, ‘4차원법’을 착상하여 그 이론의 전개에 노력하였고, 이론물리학의 모든 것을 포괄하는 유용성을 밝히려 하였으나 실현되지 않았다. 그러나 그에 의하여 대수계(代數系)에 대한 다양한 길이 열렸고, 그 후의 대수학 및 물리학에 대한 응용에 커다란 영향을 끼쳤다. 워즈워스·콜리지 등과도 교유하였다.

CLOSE